Childrens and Young Peoples Cancers

Multidisciplinary Team Coordinators Conference, Bristol

> Meriel Jenney 10th March 2<u>009</u>

Epidemiology

Cancer prevalence in adults: 1 in 3 lifetime risk

Cancer prevalence in children under 15: 1 in 700 children by age of 15

1400 children are diagnosed with cancer in the UK each year

Types of Tumour					
Adults	Children				
Carcinoma of bronchus,	Leukaemia	30%			
breast, prostate,	Brain tumours	19%			
stomach, colon	Lymphoma	13%			
Leukaemia	Neuroblastoma	8%			
Brain tumours	Wilms' tumour	5%			
Lymphoma	Rhabdomyosarcoma				
Ewing's sarcoma	Ewing's sarcoma				
Osteosarcoma	Osteosarcoma				

Treatment of Childhood Cancer

- Chemotherapy
 - Most childhood tumours are sensitive
 - Intensive multidrug regimens often used

 - More effective but Overlapping toxicities seen
- Radiotherapy
 - Used for 'local control'
 - Brain, sarcomas, Hodgkins
 - Side effects depend on area targeted
 - May have significant late effects in children
- Surgery

Chemotherapy side effects

Gut Diarrhoea

Nutrition

Bone Marrow Red - Anaemia

White - Immune function

Platelets - Bleeding

Kidneys Electrolyte leaks

Liver Cell damage

CNS Vomiting Hair Alopecia

Acute lymphoblastic leukaemia

- 15-20% of childhood cancer
- Survival rates steadily improving
- Majority of children in UK in clinical trials
- Changes in approaches to therapy over time

Childhood ALL: a brief history

- 1860 report of use of microscope to make diagnosis of acute leukaemia in a 5 year old girl from Wurzburg, Germany
- 1960s multi agent chemotherapy regimes
 - but less than 5% of children were cured even if treated for 5 years
- 1967 cranial radiation introduced, cure rates of 50% reported
- 1970 2000 improvement of cure rates to 85%
 - due to the use of "intensification blocks" for all children BUT many patients probably over treated
 - Use of cranial radiotherapy reduced
- 2005 measurement of sub microscopic levels of leukaemia to predict relapse,
 - Treatment modified for individual patients

Temporary remissions in acute leukaemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (administering) Faber S, Diamond LK, Mercer RD, Sylvester RF, Wolf JA *N Engl J Med* 1948;238:787-793

Prognostic factors directing therapy

- Fixed factors
 - Age, sex, white cell count at diagnosis, cytogenetics
- Dynamic factors
 - response to treatment correlates with prognosis

MRD based treatment reduction: - an update

- Retrospective studies
 - Event free survival 92-95% in patients 'MRD negative' by day 35
- Prospective IBFM studies
 - 974 patients MRD low risk (day 35 and week 12), 14 (1.5%) relapse
- Prospective UK studies
 - No relapse in MRD negative day 28 and week 11 (134 patients)

MRD based treatment intensification: - an update

- Retrospective studies
 - 70% 3 year EFS in MRD high risk (day 35 and week 12), I-BFM 90
 - 72% 5 year EFS in MRD positive at day 28 of ALL 97 (one marker)

Acute lymphoblastic leukaemia

- Treatment now directed by response to chemotherapy
- Significant reduction in late effects with only few patients receiving cranial radiotherapy
- Some patients still require very intensive therapy, including transplantation

'Embryonal tumours'

- Neuroblastoma
- Wilms' tumour
- Rhabdomyosarcoma
- Primitive neuroectodermal tumour
- Retinoblastoma

Neuroblastoma

- Worldwide classification
- Age
 - <18 months good, >18 months poor
- MYCN status
 - Amplified: poor risk
- Stage of disease
- Studies can now be formally compared

Neuroblastoma – good risk

- Observation only
 - of congenital neuroblastoma even high stage
 - Low stage, non amplified
- Minimal chemotherapy
 - Usually patients under 18 months
 - If surgery deemed to carry risk
- Or 'Watch and wait' if surgery likely to cause morbidity

Neuroblastoma – high risk

- Patients over 18 months age
- Poor cytogenetic markers
 - MYCN amplification
- Stage 4 disease
 - With bony metastases

Neuroblastoma – high risk

- Intensive induction chemotherapy
- High dose therapy with
 - Autologous stem cell (bone marrow) transplant
- Retinoic acid
 - 'Matures' cells
- Anti GD2
 - Not yet available in UK targeted therapy

Lymphoma

- Rapidly growing
- Chemosensitive
 - No XRT
- Can occur in any lymph node group

Lymphomas

- Rapidly progressive
- Very responsive to therapy
- Progress in monitoring response
 - PET scanning

Positron Emission Tomography

- Labelled FDG taken up in active tumour cells
- Identifying site of disease
- Of real value in evaluating disease response
 - When a mass remains is it active?
 - Hodgkins
 - Wilms
 - Sarcomas
- Helps in disease stratification, avoiding over/ under treatment of patients

Brain tumours

- Overall 50% survival
- Improving survival for children with more aggressive tumours
- Radiotherapy important part of therapy
- Increasing use of chemotherapy
 - With increasing intensity
- Role of MDT critical

Late effects of therapy

- Chemotherapy
 - Anthracyclines (cardiac disease)
 - Alkylating agents
 - Fertility
 - Renal fuction (ifosfamide)
 - Cisplatin/carboplatin
 - Hearing
- Radiotherapy
 - Age, dose and field

MDT working in paediatric oncology

- Longstanding history of mulitdisciplinary working
 - Clinical multidisciplinary clinical care
- NICE Service guidance formally identified other MDTs
 - Diagnostic (most closely related to site specific)
 - Psychosocial
 - Late effects

Teenagers and Young adults

- Included in standards in England and Wales
 - Recognised as groups with different needs
 - Treatment may also differ poorer outcome
 - Not comfortable within paediatric or adult setting
 - Teenage Cancer Trust has pioneered the development of specialised units
 - Patient choice is at centre of guidance
 - · Disease specific expertise essential
 - 'age appropriate' facilities should be available

Patterns of cancers seen in TYA 15- to 19-Year-Olds Respiratory Urinary Oral Cavity & System System Pharynx 2% Other Digestive System 2% **Soft Tissue** Lymphomas Female Genital System 8% Bones and Joints 8% Leukemia Male Genital System Invasive CNS Skin* Endocrine 10% System* Cancer in 15- to 19-Year-Olds by Primary Site (SFFR Site Recode) U.S., SEER 1975-2000

Survival in Teenagers and Young adults

- Types of cancer seen
- Biology of cancer e.g. leukaemia
- ?Compliance
- ?Entry onto clinical trials
 - Lower rates than in children

Cancer standards

- Rare Cancer therefore development of standards has lagged behind other 'sites'
- NICE Service Guidance for England
 - Published August 2005
- Opportunity
 - Historical distribution of services
 - Services can now be planned to reflect need
 - Centre size and viability under review
 - MDTs formally idenified
 - Need for 'Shared care'
 - Needs of teenagers and young people recognised

Cancer standards

- DoH cancer measures shortly to be published (recent consultation)
- Cancer standards to be published in Scotland and Wales
- To be followed by standards for the treatment of cancer in young people

Risk stratification for follow up (more than 5 years from completion of treatment)

(Taylor et al 2004)

Level	Treatment	Method of Follow up	Frequency	Examples of Tumours
1	- Surgery alone - Low risk chemotherapy	Postal or telephone	1-2 years	- Wilms Stage I or II - Low risk LCH - Germ cell tumours
2	-Chemotherapy Low dose cranial irradiation (<24Gy)	Nurse or Primary Care led	1-2 years	Majority of patients (e.g. ALL in first remission)
3	-Radiotherapy, except low dose cranial irradiation - Megatherapy	Medically supervised late effects clinic	Annual	- Brain tumours - Post BMT - Stage 4 patients (any tumour type)

The future

- European and worldwide collaboration
 - Rare tumours require international clincal trials
- · More treatment for some, less for others
 - Curing more
 - Reducing late effects of therapy
- New imaging
- New standards for care
- Prevention and screening.......