Catherine S Thomsonª, Tori Howarda, Matthew Wickendena, Jon Shelton ${ }^{\text {b }}$ and Professor Alan K White ${ }^{\text {c }}$

${ }^{a}$ Cancer Research UK Statistical Information Team, ${ }^{\text {b }}$ National Cancer Intelligence Network, ${ }^{\text {c }}$ Centre for Men's Health Leeds Metropolitan University

INTRODUCTION

In general, men are at significantly greater risk of both developing and dying from nearly all of the common cancers that occur in both sexes (with the exception of breast cancer). This analysis updates
previous findings from 2010, ${ }^{1}$ and presents trends over time in these ratios and new analyses of lifetime risk and survival data. ${ }^{2}$ The cancer burden in those of working age (20-64) was examined in detail.

METHODS

Male-to-female age-standardised rate ratios for UK incidence (1975-2010) and mortality (1971-2010) data were calculated for all cancers, for combinations of all excluding lung, breast and the sex-specific cancers, and for individual cancer sites. UK lifetime
risk was calculated using data for 2010. One- and five-year relative survival (20052009) and ten-year relative survival (2007), were examined for inequalities between the sexes. Non-melanoma skin cancer (NMSC) was excluded from all analyses.

RESULTS

INCIDENCE AND MORTALITY RATE RATIOS

In 2010, UK males continued to have a higher risk of both developing and dying from cancer than females, with a male-to-female incidence rate ratio (IRR) of 1.14 (Figure 1) and a mortality rate ratio (MRR) of 1.37 (data shown in full report).?
When only those cancers which both sexes can get (excluding breast cancer) were examined, the rate ratios were even larger: IRR 1.56 and MRR 1.67. However, for all cancers excluding lung cancer, the IRR was not significantly higher (1.10; 95\% Cl 0.77-1.53) and the MRR was only just significant (1.33, 95% Cl 1.01-1.52); thus showing the influence of smoking on lung cancer rates (Figure 2).

Figure 1: Incidence Rate Ratios (IRRs)

 Brain and CNS includes all malignanat tumours of the brain and other parts of
the central nenous system only.

Figure 3a: Decreasing Male-to-Female IRRs

Men of working age (20-64) had a lower risk of developing all cancers (IRR 0.80) and all excluding lung cancer (IRR 0.77), but men had an increased risk of developing those cancers which affect both sexes excluding breast cancer (IRR 1.39), reflecting the predominance of breast and sex-specific cancers in younger women (Figure 1).

Figure 2: Smoking and Lung Cancer Trends

Year of smoking prevalence, diagnosis or death Smoking prevalence, Creat Britian, 1948 -2010 (weighted atter 1998).
 2010.

Since the 1970s, IRRs between males and females of working age have been mostly decreasing for Hodgkin Lymphoma, kidney and lung cancers (Figure 3a), and mostly increasing for malignant melanoma and oesophageal cancer (Figure 3b). There were not consistent trends for most of the other cancers examined (data not shown). The drop in lung cancer IRRs (Figure 3a), again reflects the pattern seen in smoking prevalence (Figure 2).

Figure 3b: Increasing Male-to-Female IRRs

European age-standardised male-to-female cancer incidence rate ratios, $20-64$ year olds, Great Britian, $1975-1977$ to $2008-2010$, base-2 logarithmic scale.

ACKNOWLEDGEMENTS

Many thanks to Ella Ohuma, Katrina Brownª, Lucy Ironmongera and Sarah Beardonáa for data preparation, Alan Slatera for graphic design and layout, the CRUK Cancer Survival group at London School of Hygiene and Tropical Medicine, and for the essential work of the National Cancer Registration Service (part of Public Health England), the Office for National Statistics in England, and the cancer registries in Wales, Scotland and Northern Ireland.

LIFETIME RISK

The risk of a baby born in 2010 being diagnosed with cancer during their lifetime is 44% for baby boys and 40% for baby girls, or more than 1 in 3 for both sexes (Table 1). When breast and sex-specific cancers are excluded from the calculation, the gap between the sexes is wider (lifetime risk: 35% for baby boys and 26% for baby girls). Lifetime risk data for the individual cancer sites are given in the full report. ${ }^{2}$

Table 1: Lifetime Risk	Lifetime risk			
	\%		1 in X	
Cancer site ico-10.codes	Male	Female	Male	Female
All cancers excl. NMSC coo.97ext C44	43.9	40.1	3	3
All cancers excl. NMSC and lung cancer coo.-97ex. $\mathbf{C 4 4}$, C33-c34	37.8	35.5	3	3
All cancers excl. NMSC, breast and sex-specific coo-97 exl C C4, c50, C51-58. C60.63	34.5	25.8	3	4
All cancers excl. NMSC, breast, lung \& sex-specific coo-97ext. C44, C33-34, c50, C51-58, C60-63	27.8	20.6	4	5

Risk for babies born in 2010 being diagnosed with selected cancers overa lifetime, UK, 2010.

10-YEAR SURVIVAL

Overall, ten-year relative survival for males was 39% compared with 51% for females. This is likely to be driven by the fact that there are around 9,000 more females getting breast cancer each year (with a good prognosis) than there are males getting prostate cancer. Individual cancers showed differences between the sexes but the pattern was less clear. For many cancers males had poorer survival than females, but for several cancers there was no difference, and for a few cancers males had better survival (Table 2).

Ten-year age-standardised relative survival for adults laged $15-99$ years) England and Wales Sunvival is not age-standardised for cancers of the brain, lung, oesophagus or Brain includes malignant tumours of the brain only.

Table 2: Ten-Year Relative Survival (\%) By Sex

CONCLUSIONS

Large inequalities exist between the sexes in cancer burden and fatality, for which there are various reasons, although why males are so much more likely to develop cancer than females is complex and still only partially understood. ${ }^{3}$ A biological component is likely as female sex-hormones and sex differences in the immune system are implicated in some of the differences seen. ${ }^{4}$ However, it is possible that the incidence of those cancers caused by smoking, and those influenced by diet, alcohol consumption, and being overweight
reflect sex differences in such behaviours. Examination of the trends in rate ratios over time may help us understand the links with lifestyle factors, in particular smoking. Indeed we have shown the strong effect of smoking on lung cancer incidence rate ratios between the sexes. In addition to these lifestyle factors, a number of other factors are likely to contribute to the inequality between the sexes. More research is required to unravel these relationships in the hope that avoidable inequalities can be reduced or even eliminated in the future.

REFERENCES

1. White AK, et al. Men's Heath and the Excess Burden of Cancer in Men. Eur
Urol Supp (2010;9(3):467-470. 4. Dorak M, Karpuzoglu. E. Gender differences in cancer susceptibility: an
inadeauately addressed issue. Front Genet 2012; ; 3:268.

 metropolitan
inational cancer university
