How does a diagnosis of cancer affect life expectancy? Making use of the loss in expectation of life.

Paul C Lambert^{1,2}, Mark J Rutherford¹, Therese M-L Andersson²

¹Department of Health Sciences, University of Leicester, Leicester, UK
²Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet. Stockholm. Sweden

NCIN, Brighton, June 2013

- We want to quantify,
 - The impact of a cancer diagnosis on survival.
 - The impact of differences in survival between population groups.

- We want to quantify,
 - The impact of a cancer diagnosis on survival.
 - The impact of differences in survival between population groups.
- Net (relative) survival is a measure in the hypothetical world where it is not possible to die from other causes.

- We want to quantify,
 - The impact of a cancer diagnosis on survival.
 - The impact of differences in survival between population groups.
- Net (relative) survival is a measure in the hypothetical world where it is not possible to die from other causes.
- Need alternative (real world) measures,
 - Crude (real world) probabilities[1]
 - 'Avoidable' Deaths[2]
 - Loss in Expectation of Life[3]

- We want to quantify,
 - The impact of a cancer diagnosis on survival.
 - The impact of differences in survival between population groups.
- Net (relative) survival is a measure in the hypothetical world where it is not possible to die from other causes.
- Need alternative (real world) measures,
 - Crude (real world) probabilities[1]
 - 'Avoidable' Deaths[2]
 - Loss in Expectation of Life[3]

Expectation of life

Expectation of life

Loss in expectation of life

Loss in expectation of life

Quantify disease burden on society

"How many life-years are lost due to the disease?"

Quantify disease burden on society

"How many life-years are lost due to the disease?"

Quantify differences between socio-economic groups

"How many life-years are lost due to differences in cancer patient survival between deprivation groups?"

Quantify disease burden on society

"How many life-years are lost due to the disease?"

Quantify differences between socio-economic groups

"How many life-years are lost due to differences in cancer patient survival between deprivation groups?"

Quantify differences between countries

"How many life-years would be gained if England had the same cancer patient survival as Sweden?"

Quantify disease burden on society

"How many life-years are lost due to the disease?"

Quantify differences between socio-economic groups

"How many life-years are lost due to differences in cancer patient survival between deprivation groups?"

Quantify differences between countries

"How many life-years would be gained if England had the same cancer patient survival as Sweden?"

 Gives more weight to young patients because they have more years to lose.

5/18

Limited follow-up

Limited follow-up

Limited follow-up

How do we extrapolate observed survival?

Estimating Loss in Expectation of Life

- Main problem is how to extrapolate to long term.
- We build on ideas of Hakama and Hakulinen[3] and use relative survival / excess mortality framework.

 $\begin{array}{lll} \mathsf{Observed} & = & \mathsf{Expected} \\ \mathsf{Mortality} \; \mathsf{Rate} & = & \mathsf{Mortality} \; \mathsf{Rate} \end{array} + \begin{array}{ll} & \mathsf{Excess} \\ & \mathsf{Mortality} \; \mathsf{Rate} \end{array}$

Estimating Loss in Expectation of Life

- Main problem is how to extrapolate to long term.
- We build on ideas of Hakama and Hakulinen[3] and use relative survival / excess mortality framework.

- As time since diagnosis increases the expected mortality rate dominates.
- Simple assumptions about excess mortality (relative survival) can be made when extrapolating.
- Cure: no excess mortality after a certain point in time[4]
- Constant excess mortality after a certain point in time
- Excess mortality estimated from the model

Evaluation of Extrapolation: Colon (Sweden)

Evaluation of Extrapolation: Melanoma (Sweden)

Bladder Cancer (Sweden)

Breast Cancer (Sweden)

Deprivation Differences in England and Wales

- Woman diagnosed with breast cancer in England and Wales 1999-2009.
- Follow-up to end of 2010
- Five quintiles of deprivation (income domain of IMD).
- Expectation of life estimated from flexible parametric excess mortality model incorporating age and deprivation quintile.
- Period Analysis used with 3 year window.
- For illustration I compare the most and least deprived groups.

Ago 60	Expected Remaining Life		Loss in	% of
Age 60	Breast Cancer	Population	Exp. of Life	Life Lost
Least Deprived				
Most Deprived				
Difference				

Age 60	Expected Remaining Life		Loss in	% of
Age UU	Breast Cancer	Population	Exp. of Life	Life Lost
Least Deprived	22.2			
Most Deprived	18.1			
Difference	4.1			

A = 0 60	Expected Remaining Life		Loss in	% of
Age 60	Breast Cancer	Population	Exp. of Life	Life Lost
Least Deprived	22.2	26.9		
Most Deprived	18.1	23.0		
Difference	4.1	3.9		

	A = 0 60	Expected Remaining Life		Loss in	% of
	Age 60	Breast Cancer	Population	Exp. of Life	Life Lost
_	Least Deprived	22.2	26.9	4.7	
	Most Deprived	18.1	23.0	5.0	
_	Difference	4.1	3.9	-0.3	

A == 60	Expected Remaining Life		Loss in	% of
Age 60	Breast Cancer	Population	Exp. of Life	Life Lost
Least Deprived	22.2	26.9	4.7	17.6%
Most Deprived	18.1	23.0	5.0	21.5%
Difference	4.1	3.9	-0.3	-4.0%

A = 0 60	Expected Remaining Life		Loss in	% of
Age 60	Breast Cancer	Population	Exp. of Life	Life Lost
Least Deprived	22.2	26.9	4.7	17.6%
Most Deprived	18.1	23.0	5.0	21.5%
Difference	4.1	3.9	-0.3	-4.0%

Over All Ages

Estimated total life years lost in England Wales associated with a diagnosis of breast cancer 2009 is 241,363.

Age 60	Expected	Elimin	ating Inequality
	Remaining Life	All	Cancer
Least Deprived			
Most Deprived			
Difference			

Age 60	Expected	Eliminating Inequal	
Age 00	Remaining Life	All	Cancer
Least Deprived	22.2		
Most Deprived	18.1		
Difference	4.1		

Age 60	Expected	Eliminating Inequa	
Age 00	Remaining Life	All	Cancer
Least Deprived	22.2	22.2	
Most Deprived	18.1	22.2	
Difference	4.1	0	

Age 60	Expected	Elimin	ating Inequality
Age 00	Remaining Life	All	Cancer
Least Deprived	22.2	22.2	22.2
Most Deprived	18.1	22.2	19.0
Difference	4.1	0	3.2

Age 60	Expected	Eliminating Inequality	
Age 00	Remaining Life	All	Cancer
Least Deprived	22.2	22.2	22.2
Most Deprived	18.1	22.2	19.0
Difference	4.1	0	3.2

- Difference of 4.1 years between deprivation groups.
- 0.9 years (22%) due to inequality in breast cancer survival.
- 3.2 years (78%) due to inequality in other cause survival.

Age 60	Expected	Eliminating Inequalit	
Age 00	Remaining Life	All	Cancer
Least Deprived	22.2	22.2	22.2
Most Deprived	18.1	22.2	19.0
Difference	4.1	0	3.2

- Difference of 4.1 years between deprivation groups.
- 0.9 years (22%) due to inequality in breast cancer survival.
- 3.2 years (78%) due to inequality in other cause survival.

Over All Ages and Deprivation Groups

Estimated total life years lost in England and Wales for those diagnosed in 2009 due to breast cancer survival inequality is 12,484.

Potential gain in expected remaining life

Conclusion

- Important to understand
 - the impact of a diagnosis of cancer on life expectancy.
 - the impact of differences between population groups
- Need to move from hypothetical to real world.

Conclusion

- Important to understand
 - the impact of a diagnosis of cancer on life expectancy.
 - the impact of differences between population groups
- Need to move from hypothetical to real world.
- Loss in expectation of life is an intuitive measure.
- Extrapolation methods works well[5].

Conclusion

- Important to understand
 - the impact of a diagnosis of cancer on life expectancy.
 - the impact of differences between population groups
- Need to move from hypothetical to real world.
- Loss in expectation of life is an intuitive measure.
- Extrapolation methods works well[5].
- Estimated from model that gives excess mortality/relative survival.
- Measure is different to potential years of life lost (PYLL).
- Stata software available[6]

References

- Lambert PC, Dickman PW, Nelson CP, Royston P. Estimating the crude probability of death due to cancer and other causes using relative survival models. Statistics in Medicine 2010;29:885 – 895.
- [2] Ellis L, Coleman MP, Rachet B. How many deaths would be avoidable if socioeconomic inequalities in cancer survival in england were eliminated? a national population-based study, 1996-2006. Eur J Cancer 2012;48:270–278.
- [3] Hakama M, Hakulinen T. Estimating the expectation of life in cancer survival studies with incomplete follow-up information. *Journal of Chronic Diseases* 1977;30:585–597.
- [4] Andersson TML, Dickman PW, Eloranta S, Lambert PC. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Med Res Methodol 2011;11:96.
- [5] Andersson TL, Dickman P, Eloranta S, Lambe M, Lambert P. Estimating the loss in expectation of life due to cancer using flexible parametric survival models. Statistics in Medicine submitted 2013;.
- [6] Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. The Stata Journal 2009;9:265–290.

Paul Lambert Loss in expectation of life NCIN 2013

18/18