CROSS TUMOUR SITES AND MDT ISSUES FOR MELANOMA

Julia Newton-Bishop

First issue is complexity of staging

Sub-stage		AJCC 10 year	SEER 10 year survival
		survival (Balch	in % (Gimotty et al.,
		et al., 2001)	2005a)
IA	<u>≤</u> 1	87.9 +/- 1.0	97.4
IB	\leq 1 with ulceration or	83.1 +/- 1.5	90.2
	dermal mitoses		
	1.01-2.0 no ulceration	79.2 +/-1.1	84.1
IIA	1.01-2.0 with ulceration	64.4 +/- 2.2	65.2
	2.01-4.0 no ulceration	63.8 +/- 1.7	67.3
IIB	2.01-4.0 with ulceration	50.8 +/- 1.7	62.1
	>4 no ulceration	53.9 +/- 3.3	56.3
IIC	>4 with ulceration	32.3 +/- 2.1	47.5
IIIA	1 node	62.0 +/-4.4	
	2-3 nodes	56.9 +/- 6.8	
IIIB	Micromets and ulcerated	37.8 +/- 4.8	
	primary		
	1 node	35.9 +/- 7.2	49.7
	2-3 nodes	47.7 +/- 5.8	43.6
	Satellites no nodes	39.2 +/- 5.8	59.2
IIIC	1 node and ulcerated	24.4 +/- 5.3	36.6
	primary		
	2-3 nodes and ulcerated	15.0 +/- 3.9	32.9
	primary		
	≥4 nodes	18.4 +/- 2.5	22.4
IV	Overall		14.1
	Skin and SC	15.7 +/- 2.9	
	Lung	2.5 +/- 1.5	
	Other visceral	6.0 +/- 0.9	
			+

New AJCC LDH blood

M Classification

M1	Distant skin, subcutaneous or lymph node mets	Normal LDH
M2	Lung mets	Normal LDH
M3	All other visceral or	Normal LDH
	any distant mets	Elevated LDH

AJCC Staging requirements

- Pathology report primary
 - Breslow thickness
 - Tumour ulceration
 - Mitotic rate per mm2
 - Presence of micro satellites
- Sentinel node status (usually p AJCC staging by the MDT primary)
- Presence or otherwise of palpal
 - Pathology report thereof
- Stage IV
 - Imaging
 - LDH

Primary path report

- After WLE and SNB if to be done
- At progression so that survival can be computed for each stage and

compared

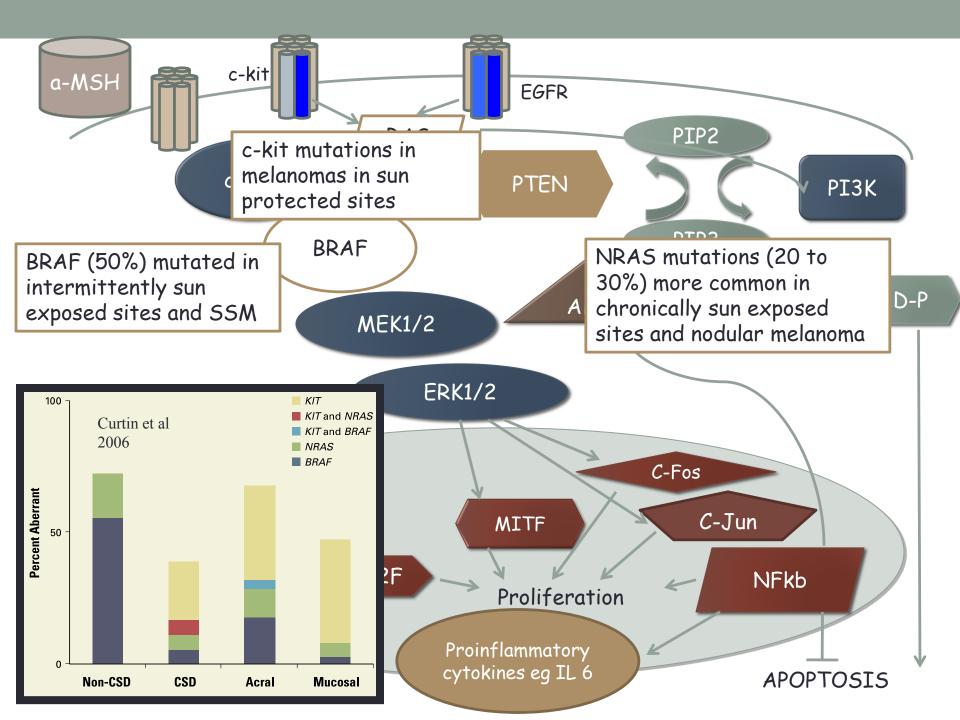
J Newton Bishop

AJCC staging based mainly on histology: but other factors also impact on survival

Leeds Cohort Study:
Determinants of relapse free and overall survival in 822 patients recruited at least 2 years (median 4.7 years)

Parameter	HR (95% CI) for RFS	HR (95% CI) for OS
Age: per year	1.01 (0.99, 1.02)	1.04 (1.02, 1.06)
Gender: male vs female	1.66 (1.10, 2.49)	1.01 (0.68, 1.56)
Site: head and neck vs trunk	0.69 (0.39, 1.24)	0.59 (0.34, 1.05)
Site: limbs vs trunk	0.77 (0.49, 1.22)	0.61 (0.38, 0.98)
Site: others vs trunk	0.87 (0.44, 1.73)	0.46 (0.22, 0.97)
Breslow thickness: per mm	1.32 (1.23, 1.41)	1.28 (1.21, 1.35)

Variation in outcome related to the biology of the tumour: biomarkers, *BRAF*, *NRAS* etc


- The somatic changes that are emerging will lead to targeted therapy
- But they will also contribute to differences in outcome with the identification of better prognostic biomarkers as well as predictive biomarkers
- We now have the tools to produce genomic profiles from even very old, small, formalin fixed primary melanomas
- Biomarker status will therefore shortly be an essential component of staging for melanoma

Data collection for skin cancers

- Problems
 - Sheer number of cases
 - Treatment by multiple MDTs
 - Head and neck team
 - Gynae team
 - Urology
 - Haematology

Cross team working

- Melanomas in rare sites eg gynae, penile, ENT should be reviewed by the melanoma SSMDT meeting even if the primary management is carried out by another team
 - Clinical trials
 - Evolving knowledge of biological origin of melanoma and its implications for treatment
- Data collection contentious
 - AJCC melanoma staging is applicable to melanomas vulva and penis
 - No AJCC staging system developed for rare mucosal site melanomas
 - My view is that we should none-the-less collect the melanoma data set for all melanomas irrespective of site where the specialist SSMDT melanoma pathologist is happy to do so

Moxley et al 2011

- The 2002 modified AJCC staging criteria were predictive of overall survival (p=0.006) in patients with malignant melanoma of the vulva.
- In the largest multi-site series of vulvar melanoma, the AJCC-2002 staging system for cutaneous malignant melanoma appears to be applicable to primary vulvar melanoma.

Van Geel et al 2007

- Penile melanoma
- Presence of ulceration, tumor depth of 3.5 mm or more, and tumor diameter greater than 15 mm had a significantly adverse effect on prognosis.

 My view is therefore that both site specific and melanoma data sets should be collected for rare site melanomas